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We show that chaotic states situated in the proximity of periodic windows in bifurcation diagrams are
eligible for the observation of coherence resonance. In particular, additive Gaussian noise of appropriate
intensity can enhance the temporal order in such chaotic states in a resonant manner. Results obtained for the
logistic map and the Lorenz equations suggest that the presented mechanism of coherence resonance is valid
beyond particularities of individual systems. We attribute the findings to the increasing attraction of imminent
periodic orbits and the ability of noise to anticipate their existence and use a modified wavelet analysis to
support our arguments.
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When noise is introduced to nonlinear systems one can
observe a variety of fascinating phenomena �1�. For ex-
ample, the phenomenon of stochastic resonance occurs when
an appropriate intensity of noise evokes the best correlation
between a weak deterministic stimulus and the system’s re-
sponse �2�. This contradicts intuitive reasoning that suggests
noise can only act destructive. Noteworthy, noise alone is
also able to induce or enhance temporal order in the dynam-
ics of a nonlinear system. The term coherence resonance has
been suggested in �3� to describe noise-induced temporal or-
der in an excitable FitzHugh-Nagumo model, yet similar
phenomena have been observed already before �4�.

Since the seminal works on stochastic and coherence
resonance, excitability has been recognized as an important
system property for a broad variety of noise-induced phe-
nomena �5�. Similarly, proximities to special bifurcation
points have also received substantial attention as being suit-
able dynamical states for the observation of stochastic and
coherence resonances �6�. Related to the latter two phenom-
ena are also system size �7� and diversity-induced �8� reso-
nances. Noteworthy, a mushrooming field of research is also
the study of effects of noise on spatially extended dynamical
systems. In �9� a partial review of the field is given and under
Ref. �10� some other works past the date of the previous
referral are listed. Importantly however, this field is growing
too fast to list here the most relevant contributions, and
hence Refs. �9,10� should only be considered as guidance for
the interested reader.

Intimately related to the content of the present Brief Re-
port are studies focusing on the impact of noise in chaotic
systems. Examples range from noise-induced order �11� and
synchronization �12� to the stochastic resonance �13�. In �14�
authors have shown that the Chua circuit operating in a cha-
otic regime with two co-existing stable chaotic attractors can
exhibit coherence resonance. Specifically, the quantity of in-

terest in �14� was the transition time between the two coex-
isting attractors. Liu and Lai have shown that the phenom-
enon of coherence resonance can also be observed in two
coupled chaotic oscillators �15�, whereby the quantity char-
acterizing the difference between their dynamics exhibits a
resonant dependence on the noise intensity. In �16� results
presented in �15� were extended to several coupled units.
Coherence resonance in coupled chaotic oscillators has also
been studied by Zhan et al. �17�, where it has been demon-
strated that a periodic wave can be triggered under the influ-
ence of noise in parameter regions of synchronous chaos.
Finally, we mention two interesting studies essentially re-
porting the opposite of coherence resonance in chaotic sys-
tems, namely noise-induced chaos �18�, where it has been
shown that noise can induce chaos in certain periodic states
that are in the parametrical proximity of chaotic behavior.

Presently, we aim to extend the scope of coherence reso-
nance in chaotic systems by showing that chaotic states in
the proximity of periodic windows in bifurcation diagrams
enable the observation of noise-enhanced temporal order,
whereby the latter exhibits a resonant dependence on the
intensity of noise. The phenomenon is demonstrated on the
logistic map and the Lorenz equations �19�, thus suggesting
that the identified mechanism of coherence resonance is
valid beyond particularities of individual systems such as
discrete or continuous dynamics, or dimensionality. We ar-
gue that the proximity of chaotic states to periodic windows
essentially acts as a near-bifurcation state �6�, whereby noisy
fluctuations can anticipate the dynamical behavior on the
other side of the bifurcation in a resonant manner. More pre-
cisely, the imminent attraction of periodic orbits can be an-
ticipated by noise, thus making the chaotic system visit the
�yet unstable� regular state, in turn enhancing the order in the
temporal output. We use a modified wavelet analysis �20�,
using as a wavelet the periodic solution emerging first in the
periodic window, to support our arguments.

As announced, we use the logistic map and the Lorenz
equations, whereby to both systems Gaussian noise is intro-
duced additively. The noisy logistic map reads

wt+1 = �wt�1 − wt� + D�t, �1�

and the noisy Lorenz equations are
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ẋ = − ��x − y� + D�t
x, �2�

ẏ = rx − y − xz + D�t
y , �3�

ż = xy − bz + D�t
z. �4�

In Eq. �1� t is an integer while in Eqs. �2�–�4� it represents
continuous time. Moreover, D2 is the variance of Gaussian
noise, ��t�=0 and ��t

i�n
j �=�tn�ij, whereby i , j� �x ,y ,z�. The

bifurcation diagram of the logistic map has a large periodic
window starting at �=3.83, while for b=8/3 and �=10 the
Lorenz equations start to exhibit periodic behavior from r
=99.5 onwards �19�. In what follows we thus concentrate on
the parameter regions ��3.83 and r�99.5, which places
both systems in chaotic states that are close to periodic be-
havior, provided the distance to the boundary values denot-
ing the advent of periodicity remains small. Since both sys-
tems are very well documented already in textbooks �19�, we
here omit the details about their deterministic dynamics and
proceed with analyzing the impact of D�0 on the temporal
order of their output.

To quantify the temporal order we compute the normal-
ized autocorrelation function

C��� =
�q̃tq̃t+��

�q̃2�
, �5�

where q̃=q− �q� and q is either the temporal trace of w �lo-
gistic map� or of x �Lorenz equations�. Finally, uniquely
quantifying coherence resonance is the correlation time �3�

�C = �
0

	

C2���d� , �6�

whereby the larger the value of �C the larger the temporal
order in the studies series.

We start with the noisy logistic map. Figure 1 features
results of quantification of temporal order for different � and
D. Clearly, noise is able to enhance the temporal order of the
system’s output for some � in a resonant manner depending
on D, thus marking the existence of coherence resonance in
the chaotic logistic map. It is evident that as �→3.83 the
maximally possible enhancement of temporal order due to
noise increases, and moreover, that only chaotic states in the
nearby vicinity of the periodic window warrant the observa-
tion of coherence resonance. Also, the optimal D for which
the largest �C is obtained moves towards smaller D as �
→3.83, which is in accordance with the expectation that
smaller noise intensities have a larger impact if the system is
closer to the periodic window. Note that qualitatively similar
observations have been made for systems near bifurcation
points �6�, where stronger noise levels are required, and con-
sequently an overall decrease of temporal order is observed,
as the system moves further away from the bifurcation point.

Next, we consider the noisy Lorenz equations. Figure 2
shows how �C varies in dependence on D by different r. As
in Fig. 1, it is evident that noise can enhance the temporal
order in a chaotic state provided the latter is situated close to
the periodic window. However, as this necessary condition is
relaxed the coherence resonance first fades, moving towards

higher D, and eventually vanishes completely. Due to con-
siderable conceptual differences between the two studied
models, results in Figs. 1 and 2 suggest that the presented
mechanism of coherence resonance is quite general and
should thus be easily transferable to other systems as well.

Before we turn to explaining the mechanism behind the
reported coherence resonance, we would like to note that the
height of the resonance curve depends somewhat on the spe-
cific properties of chaos prior to the onset of periodicity. In
particular, almost periodic, often called intermittent chaotic
states �characterized by a positive yet close-to-zero maximal
Lyapunov exponent�, occurring in the proximity of some pe-

FIG. 1. �Color online� Coherence resonance in the chaotic lo-
gistic map near the periodic window starting at �=3.83. The reso-
nant dependence vanishes quickly as the system moves away from
the periodic window. Points were obtained by averaging �C over
100 different realizations for each D. Lines are guides to the eye
�also in subsequent figures�.

FIG. 2. �Color online� Coherence resonance in the chaotic Lo-
renz system near the periodic window starting at r=99.5. Note that
a resonant dependence on D can only be obtained in the proximity
of the periodic window, whereas in the midst of chaos �r=95.0� the
impact of noise is negligible or at most destructive. Points were
obtained by averaging �C over 100 different realizations for each D.
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riodic windows, typically do not yield as convincing results
as chaotic states with a highly positive maximal Lyapunov
exponent. Aside from that the phenomenon is robust and can
be observed also if the chaotic state is on the far side of the
periodic window. Importantly however, by time-continuous
systems the processor time required to obtain smooth and
convincing resonance curves is quite large and numerical
integration procedures of second order accuracy �e.g., Heun
algorithm �9�� have to be used. In addition, averages over
different realization by each D can prove superior to ex-
tremely long integration times, assuring better convergence
control of �C.

In order to explain the mechanism behind the reported
coherence resonance, we build on the fact that results in Figs.
1 and 2 show conceptual similarities with coherence reso-
nances reported previously in proximities of bifurcation
points �6�, separating for example steady state and oscillatory
solutions. We argue that presently the proximity to the peri-
odic window plays essentially the same role, thus enabling
noise to anticipate the ordered behavior in a resonant manner
and enhance the temporal regularity of the dynamics. To sup-
port this argument we propose a simple procedure based on
the wavelet analysis of temporal traces �20�. However, in-
stead of using established orthonormal wavelets �21�, we for-
mally introduce the wavelet Wh being one oscillation period
at the onset of periodicity, where h=1, . . . , pmax counts the
number of points it contains �e.g., for �=3.83 in the Logistic
map pmax=3�. Next, we define the correlation function be-
tween the wavelet and the series

G��� = K �
h=1

pmax

q̃�+hW̃h, �7�

where q̃=q− �q�� ��q�� denoting the average of the segment

of the series entering Eq. �7� by a particular ��, W̃=W− �W�
and K is a normalization constant. Finally, the quantity de-
termining the representation of the periodic orbit Wh in the
series q is


̂ = �
0

	

G2���d� , �8�

whereby for convenience we introduce the quantity 
= 
̂
− 
̂D=0 which is simply a normalization with respect to the
noise-free case. If 
�0 as D�0, the correlation between
the wavelet and the series of the system increases, thereby
confirming that noise is able to anticipate the nearby periodic

behavior from the chaotic state. Results for the logistic map
are presented in Fig. 3. Evidently, noise is indeed able to
anticipate the imminent periodic behavior in a resonant man-
ner, whereby the peak value of 
 is obtained by the same D
as the peak of �C in Fig. 1. Results for the Lorenz system are
qualitatively identical. This final result validates our pro-
posed explanation, and sets the foundations for a new coher-
ence resonance mechanism in chaotic states that is based on
the proximity to periodic windows in bifurcation diagrams.

In sum, we present a mechanism warranting the observa-
tion of coherence resonance in chaotic systems. The neces-
sary condition is the proximity of the chaotic state to a peri-
odic window in the system’s bifurcation diagram. The
dynamics of such systems is similar to the dynamics caused
by proximity to special bifurcation points in already familiar
settings of stochastic and coherence resonance �6�. Presented
results suggest that the phenomenon is largely independent
of particularities of individual systems, and should thus be
readily observed in other theoretical, as well as hopefully
also experimental, setups. Our theory could prove useful for
enhancing signal processing and detection �22� in chaotic
states in systems that operate close to periodic behavior.
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